- фокус уравнения
- vortex
Русско-английский научно-технический словарь Масловского. 2015.
Русско-английский научно-технический словарь Масловского. 2015.
фокус дифференциального уравнения — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN vortex … Справочник технического переводчика
ФОКУС — тип расположения траекторий автономной системы обыкновенных дифференциальных уравнений 2 го порядка G область единственности, в окрестности особой точки х 0. Этот тип характеризуется следующим образом. Существует окрестность Uточки х 0 такая, что … Математическая энциклопедия
Особая точка (дифференциальные уравнения) — Для термина «особая точка» см. другие значения. В математике особой точкой векторного поля называется точка, в которой векторное поле равно нулю. Особая точка векторного поля является положением равновесия или точкой покоя динамической системы,… … Википедия
Особая точка дифференциального уравнения — У термина «особая точка» существуют и другие значения. В математике, особой точкой векторного поля называется точка, в которой векторное поле равно нулю. Траектория соответствующего автономного обыкновенного дифференциального уравнения,… … Википедия
Эллипс — Не следует путать с Эллипсис. Эллипс, его фокусы и главные оси … Википедия
Кривая второго порядка — Кривая второго порядка геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида в котором по крайней мере один из коэффициентов отличен от нуля. Содержание 1 История 2 … Википедия
Кривая 2-го порядка — Кривая второго порядка геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида a11x2 + a22y2 + 2a12xy + 2a13x + 2a23y + a33 = 0, в котором по крайней мере один из коэффициентов отличен от нуля.… … Википедия
Кривые второго порядка — Кривая второго порядка геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида a11x2 + a22y2 + 2a12xy + 2a13x + 2a23y + a33 = 0, в котором по крайней мере один из коэффициентов отличен от нуля.… … Википедия
Фокальная ось — Кривая второго порядка геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида a11x2 + a22y2 + 2a12xy + 2a13x + 2a23y + a33 = 0, в котором по крайней мере один из коэффициентов отличен от нуля.… … Википедия
Фокальная хорда — Кривая второго порядка геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида a11x2 + a22y2 + 2a12xy + 2a13x + 2a23y + a33 = 0, в котором по крайней мере один из коэффициентов отличен от нуля.… … Википедия
Фокальный параметр — Кривая второго порядка геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида a11x2 + a22y2 + 2a12xy + 2a13x + 2a23y + a33 = 0, в котором по крайней мере один из коэффициентов отличен от нуля.… … Википедия